At Elettra, the Italian synchrotron light source, an internal project has been started to develop an electron beam position monitor capable of achieving sub-micron resolution with a self-compensation feature. In order to fulfil these requirements, a novel RF front end has been designed. A high isolation coupler combines the input signals with a known pilot tone which is generated by the readout system. This allows the parameters of the four channels to be continuously calibrated, by compensating the different responses of each channel. A similar technique is already known, but for the first time experimental results have shown the improvement in resolution due to this method. The RF chain was coupled with a 4-channel digitizer based on 160 MHz, 16 bits ADCs and an Altera Stratix FPGA. At first, no additional processing was done in the FPGA, collecting only the raw data from the ADCs; the position was calculated through the FFT of each signal. A simulation was also performed to verify the analytic relation between spatial resolution and signal-to-noise ratio; this was very useful to better understand the behaviour of the system with different sources of noise (aperture jitter, thermal noise, etc.). The experimental data were compared with the simulation, showing indeed a perfect agreement with the latter and confirming the capability of the system to reach sub-micrometric accuracy. Therefore, the use of the pilot tone greatly improves the quality of the system, correcting the drifts and increasing the spatial resolution by a factor of 4 in a time window of 24 hours.
Pilot tone as a key to improving the spatial resolution of eBPMs
BRAJNIK, GABRIELE;CARRATO, SERGIO;BASSANESE, SILVANO;CAUTERO, GIUSEPPE;DE MONTE, RAFFAELE
2016-01-01
Abstract
At Elettra, the Italian synchrotron light source, an internal project has been started to develop an electron beam position monitor capable of achieving sub-micron resolution with a self-compensation feature. In order to fulfil these requirements, a novel RF front end has been designed. A high isolation coupler combines the input signals with a known pilot tone which is generated by the readout system. This allows the parameters of the four channels to be continuously calibrated, by compensating the different responses of each channel. A similar technique is already known, but for the first time experimental results have shown the improvement in resolution due to this method. The RF chain was coupled with a 4-channel digitizer based on 160 MHz, 16 bits ADCs and an Altera Stratix FPGA. At first, no additional processing was done in the FPGA, collecting only the raw data from the ADCs; the position was calculated through the FFT of each signal. A simulation was also performed to verify the analytic relation between spatial resolution and signal-to-noise ratio; this was very useful to better understand the behaviour of the system with different sources of noise (aperture jitter, thermal noise, etc.). The experimental data were compared with the simulation, showing indeed a perfect agreement with the latter and confirming the capability of the system to reach sub-micrometric accuracy. Therefore, the use of the pilot tone greatly improves the quality of the system, correcting the drifts and increasing the spatial resolution by a factor of 4 in a time window of 24 hours.File | Dimensione | Formato | |
---|---|---|---|
sri_2015.pdf
Accesso chiuso
Descrizione: Articolo principale
Tipologia:
Documento in Versione Editoriale
Licenza:
Digital Rights Management non definito
Dimensione
397.97 kB
Formato
Adobe PDF
|
397.97 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.