We consider the problem of the automatic synthesis of road traffic rules, motivated by a future scenario in which human and machine-based drivers will coexist on the roads: in that scenario, current road rules may be either unsuitable or inefficient. We approach the problem using Grammatical Evolution (GE). To this end, we propose a road traffic model which includes concepts amenable to be regulated (e.g., lanes, intersections) and which allows drivers to temporarily evade traffic rules when there are no better alternatives. In our GE framework, each individual is a set of rules and its fitness is a weighted sum of traffic efficiency and safety, as resulting from a number of simulations where all drivers are subjected to the same rules. Experimental results show that our approach indeed generates rules leading to a safer and more efficient traffic than enforcing no rules or rules similar to those currently used.
Road Traffic Rules Synthesis Using Grammatical Evolution
MEDVET, Eric;BARTOLI, Alberto;TALAMINI, JACOPO
2017-01-01
Abstract
We consider the problem of the automatic synthesis of road traffic rules, motivated by a future scenario in which human and machine-based drivers will coexist on the roads: in that scenario, current road rules may be either unsuitable or inefficient. We approach the problem using Grammatical Evolution (GE). To this end, we propose a road traffic model which includes concepts amenable to be regulated (e.g., lanes, intersections) and which allows drivers to temporarily evade traffic rules when there are no better alternatives. In our GE framework, each individual is a set of rules and its fitness is a weighted sum of traffic efficiency and safety, as resulting from a number of simulations where all drivers are subjected to the same rules. Experimental results show that our approach indeed generates rules leading to a safer and more efficient traffic than enforcing no rules or rules similar to those currently used.File | Dimensione | Formato | |
---|---|---|---|
programme - conference paper.pdf
Accesso chiuso
Tipologia:
Documento in Versione Editoriale
Licenza:
Digital Rights Management non definito
Dimensione
880.86 kB
Formato
Adobe PDF
|
880.86 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.