Preservation and restoration of ancient mosaics is a crucial activity for the perpetuation of cultural heritage of many countries. Such an activity is usually based on manual procedures which are typically lengthy and costly. Digital imaging technologies have a great potential in this important application domain, from a number of points of view including smaller costs and much broader functionalities. In this work, we propose a mosaic-oriented image segmentation algorithm aimed at identifying automatically the tiles composing a mosaic based solely on an image of the mosaic itself. Our proposal consists of a Genetic Algorithm, in which we represent each candidate segmentation with a set of quadrangles whose shapes and positions are modified during an evolutionary search based on multi-objective optimization. We evaluate our proposal in detail on a set of real mosaics which differ in age and style. The results are highly promising and in line with the current state-of-the-art.
Segmentation of Mosaic Images Based on Deformable Models Using Genetic Algorithms
BARTOLI, Alberto;FENU, GIANFRANCO;MEDVET, Eric;PELLEGRINO, FELICE ANDREA;
2017-01-01
Abstract
Preservation and restoration of ancient mosaics is a crucial activity for the perpetuation of cultural heritage of many countries. Such an activity is usually based on manual procedures which are typically lengthy and costly. Digital imaging technologies have a great potential in this important application domain, from a number of points of view including smaller costs and much broader functionalities. In this work, we propose a mosaic-oriented image segmentation algorithm aimed at identifying automatically the tiles composing a mosaic based solely on an image of the mosaic itself. Our proposal consists of a Genetic Algorithm, in which we represent each candidate segmentation with a set of quadrangles whose shapes and positions are modified during an evolutionary search based on multi-objective optimization. We evaluate our proposal in detail on a set of real mosaics which differ in age and style. The results are highly promising and in line with the current state-of-the-art.File | Dimensione | Formato | |
---|---|---|---|
front matter+Bartoli.pdf
Accesso chiuso
Tipologia:
Documento in Versione Editoriale
Licenza:
Digital Rights Management non definito
Dimensione
1.23 MB
Formato
Adobe PDF
|
1.23 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.