The general interest in anticancer metal-based drugs and some encouraging pharmacological results obtained at the beginning of the investigations on innovative Ru-based drugs triggered a lot of attention on NAMI-A and KP1019, the two Ru(III) coordination compounds that are the subject of this review. This great attention led to a considerable amount of scientific results and, more importantly, to their eventual admission into clinical trials. Both complexes share a relatively low systemic toxicity that allows reaching rather high dosages, comparable to those of carboplatin. Soon it became evident that NAMI-A and KP1019, in spite of their structural similarity, manifest very distinct chemical and biological properties. The pharmacological performances qualified KP1019 mainly as a cytotoxic drug for the treatment of platinum-resistant colorectal cancers, whereas NAMI-A gained the reputation of a potential anticancer drug with negligible effects on the primary tumor but a pronounced ability to affect metastases. We believe that a strictly comparative exam of NAMI-A and KP1019, based on the substantial body of studies accomplished since their discovery almost 30 years ago, might be an useful exercise, both for assessing the state of the art in terms of biological and clinical profiles, and of the inherent mechanisms, and for envisaging possible future developments in the light of past achievements.
The Deceptively Similar Ruthenium(III) Drug Candidates KP1019 and NAMI-A Have Different Actions. What Did We Learn in the Past 30 Years?
Enzo Alessio;
2018-01-01
Abstract
The general interest in anticancer metal-based drugs and some encouraging pharmacological results obtained at the beginning of the investigations on innovative Ru-based drugs triggered a lot of attention on NAMI-A and KP1019, the two Ru(III) coordination compounds that are the subject of this review. This great attention led to a considerable amount of scientific results and, more importantly, to their eventual admission into clinical trials. Both complexes share a relatively low systemic toxicity that allows reaching rather high dosages, comparable to those of carboplatin. Soon it became evident that NAMI-A and KP1019, in spite of their structural similarity, manifest very distinct chemical and biological properties. The pharmacological performances qualified KP1019 mainly as a cytotoxic drug for the treatment of platinum-resistant colorectal cancers, whereas NAMI-A gained the reputation of a potential anticancer drug with negligible effects on the primary tumor but a pronounced ability to affect metastases. We believe that a strictly comparative exam of NAMI-A and KP1019, based on the substantial body of studies accomplished since their discovery almost 30 years ago, might be an useful exercise, both for assessing the state of the art in terms of biological and clinical profiles, and of the inherent mechanisms, and for envisaging possible future developments in the light of past achievements.File | Dimensione | Formato | |
---|---|---|---|
Alessio-Messori - Metallo-Drugs Development and Action of Anticancer Agents 5..pdf
Accesso chiuso
Descrizione: Reprint del Capitolo 5 di Metal Ions in Life Sciences (2018), 18 (Metallo-Drugs: Development and Action of Anticancer Agents)
Tipologia:
Documento in Versione Editoriale
Licenza:
Copyright Editore
Dimensione
581.13 kB
Formato
Adobe PDF
|
581.13 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.