We prove existence and uniqueness of classical solutions of the anisotropic prescribed mean curvature problem egin{equation*} { m -div}left({ abla u}/{sqrt{1 + | abla u|^2}} ight) = -au + {b}/{sqrt{1 + | abla u|^2}}, ext{ in } B, quad u=0, ext{ on } partial B, end{equation*} where $a,b>0$ are given parameters and $B$ is a ball in ${mathbb R}^N$. The solution we find is positive, radially symmetric, radially decreasing and concave. This equation has been proposed as a model of the corneal shape in the recent papers [13,14,15,18,17], where however a linearized version of the equation has been investigated.
Radially symmetric solutions of an anisotropic mean curvature equation modeling the corneal shape
Corsato, Chiara;Coster, Colette De;Omari, Pierpaolo
2015-01-01
Abstract
We prove existence and uniqueness of classical solutions of the anisotropic prescribed mean curvature problem egin{equation*} { m -div}left({ abla u}/{sqrt{1 + | abla u|^2}} ight) = -au + {b}/{sqrt{1 + | abla u|^2}}, ext{ in } B, quad u=0, ext{ on } partial B, end{equation*} where $a,b>0$ are given parameters and $B$ is a ball in ${mathbb R}^N$. The solution we find is positive, radially symmetric, radially decreasing and concave. This equation has been proposed as a model of the corneal shape in the recent papers [13,14,15,18,17], where however a linearized version of the equation has been investigated.File | Dimensione | Formato | |
---|---|---|---|
cover+contributo.pdf
Accesso chiuso
Tipologia:
Documento in Versione Editoriale
Licenza:
Copyright Editore
Dimensione
316.71 kB
Formato
Adobe PDF
|
316.71 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
11368_2922393_Post_Print.pdf
accesso aperto
Tipologia:
Bozza finale post-referaggio (post-print)
Licenza:
Digital Rights Management non definito
Dimensione
309.05 kB
Formato
Adobe PDF
|
309.05 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.