We prove existence and uniqueness of classical solutions of the anisotropic prescribed mean curvature problem egin{equation*} { m -div}left({ abla u}/{sqrt{1 + | abla u|^2}} ight) = -au + {b}/{sqrt{1 + | abla u|^2}}, ext{ in } B, quad u=0, ext{ on } partial B, end{equation*} where $a,b>0$ are given parameters and $B$ is a ball in ${mathbb R}^N$. The solution we find is positive, radially symmetric, radially decreasing and concave. This equation has been proposed as a model of the corneal shape in the recent papers [13,14,15,18,17], where however a linearized version of the equation has been investigated.

Radially symmetric solutions of an anisotropic mean curvature equation modeling the corneal shape

Corsato, Chiara;Coster, Colette De;Omari, Pierpaolo
2015-01-01

Abstract

We prove existence and uniqueness of classical solutions of the anisotropic prescribed mean curvature problem egin{equation*} { m -div}left({ abla u}/{sqrt{1 + | abla u|^2}} ight) = -au + {b}/{sqrt{1 + | abla u|^2}}, ext{ in } B, quad u=0, ext{ on } partial B, end{equation*} where $a,b>0$ are given parameters and $B$ is a ball in ${mathbb R}^N$. The solution we find is positive, radially symmetric, radially decreasing and concave. This equation has been proposed as a model of the corneal shape in the recent papers [13,14,15,18,17], where however a linearized version of the equation has been investigated.
File in questo prodotto:
File Dimensione Formato  
cover+contributo.pdf

Accesso chiuso

Tipologia: Documento in Versione Editoriale
Licenza: Copyright Editore
Dimensione 316.71 kB
Formato Adobe PDF
316.71 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
11368_2922393_Post_Print.pdf

accesso aperto

Tipologia: Bozza finale post-referaggio (post-print)
Licenza: Digital Rights Management non definito
Dimensione 309.05 kB
Formato Adobe PDF
309.05 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2922393
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact