Glazing facades are widely used in building structures, due to a series of aesthetic, thermal, lightening aspects. From a structural point of view, under the action of exceptional loads as impacts, explosions, seismic events or hazards in general, the glazing envelopes often represent the critical component for multi-storey buildings, due to the typically brittle behaviour and limited tensile resistance of the glass panes, hence requiring specific, fail-safe design concepts. In this paper, the feasibility and potential of special mechanical connectors interposed at the interface between a given multi-storey primary building structure and the glazing facade are investigated via accurate finite-element numerical models, under various impact scenarios. As shown, the final result is an assembled structural system in which the facade can work as passive control system for the primary structure, in the form of a distributed tuned-mass damper (TMD).

Improving the dynamic performance of multi-storey buildings via protective glazing curtain walls

Bedon, Chiara
;
Amadio, Claudio
2018-01-01

Abstract

Glazing facades are widely used in building structures, due to a series of aesthetic, thermal, lightening aspects. From a structural point of view, under the action of exceptional loads as impacts, explosions, seismic events or hazards in general, the glazing envelopes often represent the critical component for multi-storey buildings, due to the typically brittle behaviour and limited tensile resistance of the glass panes, hence requiring specific, fail-safe design concepts. In this paper, the feasibility and potential of special mechanical connectors interposed at the interface between a given multi-storey primary building structure and the glazing facade are investigated via accurate finite-element numerical models, under various impact scenarios. As shown, the final result is an assembled structural system in which the facade can work as passive control system for the primary structure, in the form of a distributed tuned-mass damper (TMD).
2018
978-1-78466-313-1
File in questo prodotto:
File Dimensione Formato  
WIT_book.pdf

Accesso chiuso

Tipologia: Altro materiale allegato
Licenza: Copyright Editore
Dimensione 353.59 kB
Formato Adobe PDF
353.59 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
WIT_book-paper.pdf

Accesso chiuso

Tipologia: Documento in Versione Editoriale
Licenza: Copyright Editore
Dimensione 1.27 MB
Formato Adobe PDF
1.27 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2926246
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact