Dilated cardiomyopathy is characterized by progressive cardiomyocyte loss leading to ventricle dilation and dysfunction. Over the last decade, multiple evidence has shown that treatment of this condition might be attempted through the administration of either cells of various derivations or nucleic acids. In the case of cell therapy, there is ample consensus that no stem cells can directly regenerate the myocardium; however some cell types could provide benefit through a paracrine function on resident cardiomyocytes. Various nucleic acids, including microRNAs and antisense locked nucleic acids targeting microRNAs and long non-coding RNAs, can stimulate regeneration by promoting the proliferation potential of endogenous cardiomyocytes. Albeit at the preclinical phase, these approaches hold a great promise for the development of innovative therapeutics. Patients with idiopathic dilated cardiomyopathy are generally young subjects. Therefore, the assessment of prognosis is essential. Biomarkers are nowadays widely available and are useful tools for risk stratification. Besides HF-dedicated biomarkers, such as natriuretic peptides, galectin-3, soluble ST2 and troponins, also the evaluation of inflammatory response (interleukins, growth factors), renal function (NGAL, KIM-1) and anaemia are particularly important for a correct prognostic stratification. Moreover, when all of these biomarkers are used and combined in a multimarker model, the prediction of prognosis becomes more accurate, reflecting the importance of a holistic evaluation of patients.

Chapter 11: Regenerative Medicine and Biomarkers for Dilated Cardiomyopathy

Pierluigi Lesizza;Aneta Aleksova;Benedetta Ortis;Mauro Giacca
;
Gianfranco Sinagra.
2019-01-01

Abstract

Dilated cardiomyopathy is characterized by progressive cardiomyocyte loss leading to ventricle dilation and dysfunction. Over the last decade, multiple evidence has shown that treatment of this condition might be attempted through the administration of either cells of various derivations or nucleic acids. In the case of cell therapy, there is ample consensus that no stem cells can directly regenerate the myocardium; however some cell types could provide benefit through a paracrine function on resident cardiomyocytes. Various nucleic acids, including microRNAs and antisense locked nucleic acids targeting microRNAs and long non-coding RNAs, can stimulate regeneration by promoting the proliferation potential of endogenous cardiomyocytes. Albeit at the preclinical phase, these approaches hold a great promise for the development of innovative therapeutics. Patients with idiopathic dilated cardiomyopathy are generally young subjects. Therefore, the assessment of prognosis is essential. Biomarkers are nowadays widely available and are useful tools for risk stratification. Besides HF-dedicated biomarkers, such as natriuretic peptides, galectin-3, soluble ST2 and troponins, also the evaluation of inflammatory response (interleukins, growth factors), renal function (NGAL, KIM-1) and anaemia are particularly important for a correct prognostic stratification. Moreover, when all of these biomarkers are used and combined in a multimarker model, the prediction of prognosis becomes more accurate, reflecting the importance of a holistic evaluation of patients.
2019
978-3-030-13863-9
978-3-030-13864-6
File in questo prodotto:
File Dimensione Formato  
Chapter 11_Dilated Cardiomyopathy.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 587.52 kB
Formato Adobe PDF
587.52 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2959602
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact