A concept map is a diagram depicting relationships among concepts which is used as a knowledge representation tool in many knowledge domains. In this paper, we build on the modeling framework of Hui et al. (2008) in order to develop a concept map suitable for testing the empirical evidence of theories. We identify a theory by a set of core tenets each asserting that one set of independent variables affects one dependent variable, moreover every variable can have several operational definitions. Data consist of a selected sample of scientific articles from the empirical literature on the theory under investigation. Our “tenet map” features a number of complexities more than the original version. First the links are two-layer: first-layer links connect variables which are related in the test of the theory at issue; second-layer links represent connections which are found statistically significant. Besides, either layer matrix of link-formation probabilities is block-symmetric. In addition to a form of censoring which resembles the Hui et al. pruning step, observed maps are subject to a further censoring related to second-layer links. Still, we perform a full Bayesian analysis instead of adopting the empirical Bayes approach. Lastly, we develop a three-stage model which accounts for dependence either of data or of parameters. The investigation of the empirical support and consensus degree of new economic theories of the firm motivated the proposed methodology. In this paper, the Transaction Cost Economics view is tested by a tenet map analysis. Both the two-stage and the multilevel models identify the same tenets as the most corroborated by empirical evidence though the latter provides a more comprehensive and complex insight of relationships between constructs.

Construct Validation by Hierarchical Bayesian Concept Maps An Application to the Transaction Cost Economics Theory of the Firm

Trevisani, Matilde
2020-01-01

Abstract

A concept map is a diagram depicting relationships among concepts which is used as a knowledge representation tool in many knowledge domains. In this paper, we build on the modeling framework of Hui et al. (2008) in order to develop a concept map suitable for testing the empirical evidence of theories. We identify a theory by a set of core tenets each asserting that one set of independent variables affects one dependent variable, moreover every variable can have several operational definitions. Data consist of a selected sample of scientific articles from the empirical literature on the theory under investigation. Our “tenet map” features a number of complexities more than the original version. First the links are two-layer: first-layer links connect variables which are related in the test of the theory at issue; second-layer links represent connections which are found statistically significant. Besides, either layer matrix of link-formation probabilities is block-symmetric. In addition to a form of censoring which resembles the Hui et al. pruning step, observed maps are subject to a further censoring related to second-layer links. Still, we perform a full Bayesian analysis instead of adopting the empirical Bayes approach. Lastly, we develop a three-stage model which accounts for dependence either of data or of parameters. The investigation of the empirical support and consensus degree of new economic theories of the firm motivated the proposed methodology. In this paper, the Transaction Cost Economics view is tested by a tenet map analysis. Both the two-stage and the multilevel models identify the same tenets as the most corroborated by empirical evidence though the latter provides a more comprehensive and complex insight of relationships between constructs.
978-81-944664-3-7
File in questo prodotto:
File Dimensione Formato  
Construct-Validation-by-Hierarchical-Bayesian-Concept-Maps-An-Application-to-the-Transaction-Cost-Economics-Theory-of-the-Firm.pdf

accesso aperto

Descrizione: capitolo
Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 22.93 MB
Formato Adobe PDF
22.93 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2968963
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact