This work focuses on determining the velocity profile of a granular flow at the outlet of a silo, using artificial vision techniques. The developed algorithm performs a frame enhancement through neural networks and the particle image velocimetry detects seed motion in the hopper. We process 50, 100, 150 and 200 frames of a video discharge for three different grains using: CPU and PYNQ-Z1 implementations with a simple image processing at pre-processing level, and CPU implementation using neural network. Execution times are measured and the differences between the involved technologies are discussed.

Implementation of Particle Image Velocimetry for Silo Discharge and Food Industry Seeds

Molina R.;Marsi S.;Ramponi G.;
2020-01-01

Abstract

This work focuses on determining the velocity profile of a granular flow at the outlet of a silo, using artificial vision techniques. The developed algorithm performs a frame enhancement through neural networks and the particle image velocimetry detects seed motion in the hopper. We process 50, 100, 150 and 200 frames of a video discharge for three different grains using: CPU and PYNQ-Z1 implementations with a simple image processing at pre-processing level, and CPU implementation using neural network. Execution times are measured and the differences between the involved technologies are discussed.
File in questo prodotto:
File Dimensione Formato  
ApplePies_2020_compressed.pdf

Open Access dal 27/01/2022

Descrizione: final version at link https://link.springer.com/chapter/10.1007/978-3-030-66729-0_1
Tipologia: Bozza finale post-referaggio (post-print)
Licenza: Digital Rights Management non definito
Dimensione 1.82 MB
Formato Adobe PDF
1.82 MB Adobe PDF Visualizza/Apri
Sergio Saponara, Alessandro De Gloria -.pdf

Accesso chiuso

Tipologia: Documento in Versione Editoriale
Licenza: Copyright Editore
Dimensione 1.04 MB
Formato Adobe PDF
1.04 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2991394
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact