We propose an approach to the cluster ensemble problem based on pivotal units extracted from a co-association matrix. It can be seen as a modified version of K-means method, which utilizes pivots for careful seeding. Different criteria for identifying the pivots are discussed, as well as preliminary results concerning the comparison with alternative ensemble methods.

Consensus clustering via pivotal methods

Leonardo Egidi;Roberta Pappada';Francesco Pauli;Nicola Torelli
2019-01-01

Abstract

We propose an approach to the cluster ensemble problem based on pivotal units extracted from a co-association matrix. It can be seen as a modified version of K-means method, which utilizes pivots for careful seeding. Different criteria for identifying the pivots are discussed, as well as preliminary results concerning the comparison with alternative ensemble methods.
File in questo prodotto:
File Dimensione Formato  
Pappada_Consensus clustering via pivotal methods.pdf

accesso aperto

Descrizione: contributo con frontespizio e indice del volume
Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 1.76 MB
Formato Adobe PDF
1.76 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2994355
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact