Computational peptide design is useful for therapeutics, diagnostics, and vaccine development. To select the most promising peptide candidates, the key is describing accurately the peptide-target interactions at the molecular level. We here review a computational peptide design protocol whose key feature is the use of all-atom explicit solvent molecular dynamics for describing the different peptide-target complexes explored during the optimization. We describe the milestones behind the development of this protocol, which is now implemented in an open-source code called PARCE. We provide a basic tutorial to run the code for an antibody fragment design example. Finally, we describe three additional applications of the method to design peptides for different targets, illustrating the broad scope of the proposed approach.

Computational Evolution Protocol for Peptide Design

Ivan Gladich;Nikola Minovski;Alejandro Rodriguez Garcia;Sara Fortuna;Alessandro Laio
2022-01-01

Abstract

Computational peptide design is useful for therapeutics, diagnostics, and vaccine development. To select the most promising peptide candidates, the key is describing accurately the peptide-target interactions at the molecular level. We here review a computational peptide design protocol whose key feature is the use of all-atom explicit solvent molecular dynamics for describing the different peptide-target complexes explored during the optimization. We describe the milestones behind the development of this protocol, which is now implemented in an open-source code called PARCE. We provide a basic tutorial to run the code for an antibody fragment design example. Finally, we describe three additional applications of the method to design peptides for different targets, illustrating the broad scope of the proposed approach.
978-1-0716-1854-7
File in questo prodotto:
File Dimensione Formato  
Thomas Simonson-1.pdf

Accesso chiuso

Tipologia: Documento in Versione Editoriale
Licenza: Copyright Editore
Dimensione 1.59 MB
Formato Adobe PDF
1.59 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3034882
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
social impact