The paper discusses a multiple variance methodology for measuring the impulse response for small signals of a mildly nonlinear system, i.e., the first-order kernel of a Volterra model. It is shown with theory that using multiple variance inputs and any linear impulse response measurement method, it is possible to accurately estimate the first-order kernel by applying a polynomial interpolation. The values of the input gains that minimize the influence of noise are also determined. The experimental results, considering an emulated scenario, show how the proposed method can be effectively used to accurately estimate the room impulse response in case of nonlinearities in the measurement system.

Polynomial Multiple Variance Impulse Response Measurement

Forti, Riccardo;Carini, Alberto
;
2022-01-01

Abstract

The paper discusses a multiple variance methodology for measuring the impulse response for small signals of a mildly nonlinear system, i.e., the first-order kernel of a Volterra model. It is shown with theory that using multiple variance inputs and any linear impulse response measurement method, it is possible to accurately estimate the first-order kernel by applying a polynomial interpolation. The values of the input gains that minimize the influence of noise are also determined. The experimental results, considering an emulated scenario, show how the proposed method can be effectively used to accurately estimate the room impulse response in case of nonlinearities in the measurement system.
978-1-6654-6867-1
https://ieeexplore.ieee.org/document/9914767
File in questo prodotto:
File Dimensione Formato  
FortiCariniOrcioni_IWAENC2022_v2_final.pdf

accesso aperto

Tipologia: Bozza finale post-referaggio (post-print)
Licenza: Digital Rights Management non definito
Dimensione 231.73 kB
Formato Adobe PDF
231.73 kB Adobe PDF Visualizza/Apri
2022 IWAENC2022 Forti Carini Orcioni.pdf

Accesso chiuso

Tipologia: Documento in Versione Editoriale
Licenza: Copyright dell'editore
Dimensione 909.09 kB
Formato Adobe PDF
909.09 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3037021
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact