This study uses graph representation learning techniques to analyze a regional labor flow network. The methods employed, VGAE and Role2Vec, reveal community structures and centrality of universities and research institutions in the network. The study demonstrates the potential of such techniques for analyzing complex networks and uncovering hidden structures.

Visualization of proximity and role-based embedding in a regional labour flow network

Sara Geremia
;
Fabio Morea;Domenico De Stefano
2023-01-01

Abstract

This study uses graph representation learning techniques to analyze a regional labor flow network. The methods employed, VGAE and Role2Vec, reveal community structures and centrality of universities and research institutions in the network. The study demonstrates the potential of such techniques for analyzing complex networks and uncovering hidden structures.
2023
978-88-9193-563-2
File in questo prodotto:
File Dimensione Formato  
CLADAG-2023_GeremiaEtAL.pdf

Accesso chiuso

Descrizione: Pdf degli atti disponibile liberamente sul sito del convegno
Tipologia: Documento in Versione Editoriale
Licenza: Digital Rights Management non definito
Dimensione 1.6 MB
Formato Adobe PDF
1.6 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3058140
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact