This study uses graph representation learning techniques to analyze a regional labor flow network. The methods employed, VGAE and Role2Vec, reveal community structures and centrality of universities and research institutions in the network. The study demonstrates the potential of such techniques for analyzing complex networks and uncovering hidden structures.
Visualization of proximity and role-based embedding in a regional labour flow network
Sara Geremia
;Fabio Morea;Domenico De Stefano
2023-01-01
Abstract
This study uses graph representation learning techniques to analyze a regional labor flow network. The methods employed, VGAE and Role2Vec, reveal community structures and centrality of universities and research institutions in the network. The study demonstrates the potential of such techniques for analyzing complex networks and uncovering hidden structures.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
CLADAG-2023_GeremiaEtAL.pdf
Accesso chiuso
Descrizione: Pdf degli atti disponibile liberamente sul sito del convegno
Tipologia:
Documento in Versione Editoriale
Licenza:
Digital Rights Management non definito
Dimensione
1.6 MB
Formato
Adobe PDF
|
1.6 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.