After a brief historical account, starting with the celebrated Poincaré–Birkhoff Theorem, we provide a multiplicity result for periodic solutions of some Hamiltonian systems whose Hamiltonian function H(t,x,y) is periodic in the space variables x, and even in the variables (t,y). Our result is based on a recent theorem by R. Ortega and the author, and it does not require any twist condition on the solutions of the system.
Periodic Solutions of Hamiltonian Systems with Symmetries
fonda, alessandro
Primo
2024-01-01
Abstract
After a brief historical account, starting with the celebrated Poincaré–Birkhoff Theorem, we provide a multiplicity result for periodic solutions of some Hamiltonian systems whose Hamiltonian function H(t,x,y) is periodic in the space variables x, and even in the variables (t,y). Our result is based on a recent theorem by R. Ortega and the author, and it does not require any twist condition on the solutions of the system.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
2024_Fonda_Springer.pdf
Accesso chiuso
Tipologia:
Documento in Versione Editoriale
Licenza:
Copyright Editore
Dimensione
580.12 kB
Formato
Adobe PDF
|
580.12 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.