After a brief historical account, starting with the celebrated Poincaré–Birkhoff Theorem, we provide a multiplicity result for periodic solutions of some Hamiltonian systems whose Hamiltonian function H(t,x,y) is periodic in the space variables x, and even in the variables (t,y). Our result is based on a recent theorem by R. Ortega and the author, and it does not require any twist condition on the solutions of the system.

Periodic Solutions of Hamiltonian Systems with Symmetries

fonda, alessandro
Primo
2024-01-01

Abstract

After a brief historical account, starting with the celebrated Poincaré–Birkhoff Theorem, we provide a multiplicity result for periodic solutions of some Hamiltonian systems whose Hamiltonian function H(t,x,y) is periodic in the space variables x, and even in the variables (t,y). Our result is based on a recent theorem by R. Ortega and the author, and it does not require any twist condition on the solutions of the system.
2024
978-3-031-61339-5
978-3-031-61337-1
978-3-031-61336-4
File in questo prodotto:
File Dimensione Formato  
2024_Fonda_Springer.pdf

Accesso chiuso

Tipologia: Documento in Versione Editoriale
Licenza: Copyright Editore
Dimensione 580.12 kB
Formato Adobe PDF
580.12 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3097520
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact