Agent-based models (ABMs) are simulation models used in economics to overcome some of the limitations of traditional frameworks based on general equilibrium assumptions. However, agents within an ABM follow predetermined ‘bounded rational’ behavioural rules which can be cumbersome to design and difficult to justify. Here we leverage multi-agent reinforcement learning (RL) to expand the capabilities of ABMs with the introduction of ‘fully rational’ agents that learn their policy by interacting with the environment and maximising a reward function. Specifically, we propose a ‘Rational macro ABM’ (R-MABM) framework by extending a paradigmatic macro ABM from the economic literature. We show that gradually substituting ABM firms in the model with RL agents, trained to maximise profits, allows for studying the impact of rationality on the economy. We find that RL agents spontaneously learn three distinct strategies for maximising profits, with the optimal strategy depending on the level of market competition and rationality. We also find that RL agents with independent policies, and without the ability to communicate with each other, spontaneously learn to segregate into different strategic groups, thus increasing market power and overall profits. Finally, we find that a higher number of rational (RL) agents in the economy always improves the macroeconomic environment as measured by total output. Depending on the specific rational policy, this can come at the cost of higher instability. Our R-MABM framework allows for stable multi-agent learning, is available in open source, and represents a principled and robust direction to extend economic simulators.
Simulating the Economic Impact of Rationality through Reinforcement Learning and Agent-Based Modelling
Tommaso PadoanSecondo
;
2024-01-01
Abstract
Agent-based models (ABMs) are simulation models used in economics to overcome some of the limitations of traditional frameworks based on general equilibrium assumptions. However, agents within an ABM follow predetermined ‘bounded rational’ behavioural rules which can be cumbersome to design and difficult to justify. Here we leverage multi-agent reinforcement learning (RL) to expand the capabilities of ABMs with the introduction of ‘fully rational’ agents that learn their policy by interacting with the environment and maximising a reward function. Specifically, we propose a ‘Rational macro ABM’ (R-MABM) framework by extending a paradigmatic macro ABM from the economic literature. We show that gradually substituting ABM firms in the model with RL agents, trained to maximise profits, allows for studying the impact of rationality on the economy. We find that RL agents spontaneously learn three distinct strategies for maximising profits, with the optimal strategy depending on the level of market competition and rationality. We also find that RL agents with independent policies, and without the ability to communicate with each other, spontaneously learn to segregate into different strategic groups, thus increasing market power and overall profits. Finally, we find that a higher number of rational (RL) agents in the economy always improves the macroeconomic environment as measured by total output. Depending on the specific rational policy, this can come at the cost of higher instability. Our R-MABM framework allows for stable multi-agent learning, is available in open source, and represents a principled and robust direction to extend economic simulators.File | Dimensione | Formato | |
---|---|---|---|
3677052.3698621.pdf
Accesso chiuso
Descrizione: Contributo disponibile gratuitamente sul sito: https://dl.acm.org/doi/10.1145/3677052.3698621
Tipologia:
Documento in Versione Editoriale
Licenza:
Copyright Editore
Dimensione
3.3 MB
Formato
Adobe PDF
|
3.3 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.