In a previous paper we have introduced a phenomenological model of cell metabolism and of the cell cycle to simulate the behavior of large tumor cell populations (Chignola and Milotti 2005 Phys. Biol. 2 8). Here we describe a refined and extended version of the model that includes some of the complex interactions between cells and their surrounding environment. The present version takes into consideration several additional energy-consuming biochemical pathways such as protein and DNA synthesis, the tuning of extracellular pH and of the cell membrane potential. The control of the cell cycle, which was previously modeled by means of ad hoc thresholds, has been directly addressed here by considering checkpoints from proteins that act as targets for phosphorylation on multiple sites. As simulated cells grow, they can now modify the chemical composition of the surrounding environment which in turn acts as a feedback mechanism to tune cell metabolism and hence cell proliferation: in this wa

Ab initio phenomenological simulation of the growth of large tumor cell population.

DEL FABBRO, ALESSIO;MILOTTI, EDOARDO
2007-01-01

Abstract

In a previous paper we have introduced a phenomenological model of cell metabolism and of the cell cycle to simulate the behavior of large tumor cell populations (Chignola and Milotti 2005 Phys. Biol. 2 8). Here we describe a refined and extended version of the model that includes some of the complex interactions between cells and their surrounding environment. The present version takes into consideration several additional energy-consuming biochemical pathways such as protein and DNA synthesis, the tuning of extracellular pH and of the cell membrane potential. The control of the cell cycle, which was previously modeled by means of ad hoc thresholds, has been directly addressed here by considering checkpoints from proteins that act as targets for phosphorylation on multiple sites. As simulated cells grow, they can now modify the chemical composition of the surrounding environment which in turn acts as a feedback mechanism to tune cell metabolism and hence cell proliferation: in this wa
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/1689466
 Avviso

Registrazione in corso di verifica.
La registrazione di questo prodotto non è ancora stata validata in ArTS.

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 15
social impact