In this paper the Non-Intrusive Polynomial Chaos Method coupled to a Fictitious Domain approach has been applied to one- and two-dimensional elliptic problems with geometric uncertainties, in order to demonstrate the accuracy and convergence of the methodology. The main advantage of non-intrusive formulation is that existing deterministic solvers can be used. A new Least-Squares Spectral Element method has been employed for the analysis of deterministic differential problems obtained by Non-Intrusive Polynomial Chaos. This algorithm employs a Fictitious Domain approach and for this reason its main advantage lies in the fact that only a Cartesian mesh needs to be generated. Excellent accuracy properties of method are demonstrated by numerical experiments.
Fictitious Domain with Least-Squares Spectral Element Method to Explore Geometric Uncertainties by Non-Intrusive Polynomial Chaos Method
PARUSSINI, LUCIA;PEDIRODA, VALENTINO
2007-01-01
Abstract
In this paper the Non-Intrusive Polynomial Chaos Method coupled to a Fictitious Domain approach has been applied to one- and two-dimensional elliptic problems with geometric uncertainties, in order to demonstrate the accuracy and convergence of the methodology. The main advantage of non-intrusive formulation is that existing deterministic solvers can be used. A new Least-Squares Spectral Element method has been employed for the analysis of deterministic differential problems obtained by Non-Intrusive Polynomial Chaos. This algorithm employs a Fictitious Domain approach and for this reason its main advantage lies in the fact that only a Cartesian mesh needs to be generated. Excellent accuracy properties of method are demonstrated by numerical experiments.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.