The thermal properties of hydrodynamical simulations of galaxy clusters are usually compared to observations by relying on the emission-weighted temperature Tew instead of on the spectroscopic X-ray temperature Tspec, which is obtained by actual observational data. In a recent paper, Mazzotta et al. show that if the intracluster medium is thermally complex, Tew fails at reproducing Tspec. They propose a new formula, the spectroscopic-like temperature, Tsl, which approximates Tspec better than a few percent. By analyzing a set of hydrodynamical simulations of galaxy clusters, we find that Tsl is lower than Tew by 20%-30%. As a consequence, the normalization of the M-Tsl relation from the simulations is larger than the observed one by about 50%. If masses in simulated clusters are estimated by following the same assumptions of hydrostatic equilibrium and β-model gas density profile, as is often done for observed clusters, then the M-T relation decreases by about 40% and significantly red
Titolo: | Mismatch between X-Ray and Emission-weighted Temperatures in Galaxy Clusters: Cosmological Implications |
Autori: | |
Data di pubblicazione: | 2005 |
Rivista: | |
Abstract: | The thermal properties of hydrodynamical simulations of galaxy clusters are usually compared to observations by relying on the emission-weighted temperature Tew instead of on the spectroscopic X-ray temperature Tspec, which is obtained by actual observational data. In a recent paper, Mazzotta et al. show that if the intracluster medium is thermally complex, Tew fails at reproducing Tspec. They propose a new formula, the spectroscopic-like temperature, Tsl, which approximates Tspec better than a few percent. By analyzing a set of hydrodynamical simulations of galaxy clusters, we find that Tsl is lower than Tew by 20%-30%. As a consequence, the normalization of the M-Tsl relation from the simulations is larger than the observed one by about 50%. If masses in simulated clusters are estimated by following the same assumptions of hydrostatic equilibrium and β-model gas density profile, as is often done for observed clusters, then the M-T relation decreases by about 40% and significantly red |
Handle: | http://hdl.handle.net/11368/1690381 |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1086/427554 |
URL: | http://adsabs.harvard.edu/abs/2005ApJ...618L...1R |
Appare nelle tipologie: | 1.1 Articolo in Rivista |