The distribution, sources and fate of mercury (Hg) in the water column of the Gulf of Trieste (northern Adriatic Sea), affected by the Hg polluted river SocayIsonzo for centuries draining the cinnabar-rich deposits of the Idrija mining district (NW Slovenia), were studied in terms of total and dissolved Hg, reactive Hg, total and dissolved methylmercury (MeHg), mesozooplankton Hg and MeHg, and sedimentation rates of particulate Hg. Higher total Hg concentrations in the surface layer were restricted to the area of the Gulf in front of the river plume expanding in a westerly direction. Higher concentrations in bottom water layers were the consequence of sediment resuspension. Dissolved Hg exhibited higher concentrations in the surface layer in the area in front of the river plume. Higher bottom concentrations of dissolved Hg observed at some stations were probably due to remobilization from sediments, including resuspension and benthic recycling. The relationship between dissolved Hg in the surface layer and salinity showed nonconservative mixing in June 1995 during higher riverine inflow and nearly conservative mixing in September 1995 during lower riverine inflow. Both mixing curves confirm the river SocayIsonzo to be the most important source of total and dissolved Hg, which are significantly correlated, in the Gulf. Reactive Hg is significantly correlated with dissolved Hg, indicating that the majority of dissolved Hg is reactive and potentially involved in biogeochemical transformations. The higher total MeHg in the bottom layer is the result of remobilization of MeHg from sediments including benthic fluxes. Strong seasonal variation of sedimentation rates of particulate Hg was found during a 2-year study in the central part of the Gulf. These variations followed those of total sedimented matter, indicating that sedimented Hg is mostly associated with inorganic matter. About a 2.5-fold higher fluxes of particulate Hg were observed at the depth of 20 m relative to 10 m which is attributed to bottom sediment resuspension. Temporal variability of mesozooplankton Hg and MeHg is the consequence of biomass and species variations, and grazing behaviour. From the preliminary Hg mass balance it appears that the Gulf is an efficient trap for total Hg and a net source of MeHg.

Mercury and methylmercury in the Gulf of Trieste (northern Adriatic sea)

COVELLI, STEFANO;
2003

Abstract

The distribution, sources and fate of mercury (Hg) in the water column of the Gulf of Trieste (northern Adriatic Sea), affected by the Hg polluted river SocayIsonzo for centuries draining the cinnabar-rich deposits of the Idrija mining district (NW Slovenia), were studied in terms of total and dissolved Hg, reactive Hg, total and dissolved methylmercury (MeHg), mesozooplankton Hg and MeHg, and sedimentation rates of particulate Hg. Higher total Hg concentrations in the surface layer were restricted to the area of the Gulf in front of the river plume expanding in a westerly direction. Higher concentrations in bottom water layers were the consequence of sediment resuspension. Dissolved Hg exhibited higher concentrations in the surface layer in the area in front of the river plume. Higher bottom concentrations of dissolved Hg observed at some stations were probably due to remobilization from sediments, including resuspension and benthic recycling. The relationship between dissolved Hg in the surface layer and salinity showed nonconservative mixing in June 1995 during higher riverine inflow and nearly conservative mixing in September 1995 during lower riverine inflow. Both mixing curves confirm the river SocayIsonzo to be the most important source of total and dissolved Hg, which are significantly correlated, in the Gulf. Reactive Hg is significantly correlated with dissolved Hg, indicating that the majority of dissolved Hg is reactive and potentially involved in biogeochemical transformations. The higher total MeHg in the bottom layer is the result of remobilization of MeHg from sediments including benthic fluxes. Strong seasonal variation of sedimentation rates of particulate Hg was found during a 2-year study in the central part of the Gulf. These variations followed those of total sedimented matter, indicating that sedimented Hg is mostly associated with inorganic matter. About a 2.5-fold higher fluxes of particulate Hg were observed at the depth of 20 m relative to 10 m which is attributed to bottom sediment resuspension. Temporal variability of mesozooplankton Hg and MeHg is the consequence of biomass and species variations, and grazing behaviour. From the preliminary Hg mass balance it appears that the Gulf is an efficient trap for total Hg and a net source of MeHg.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11368/1692673
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact