Vascular endothelial growth factor (VEGF) is a key regulator of blood vessel formation during both vasculogenesis and angiogenesis. The prolonged expression of VEGF in the normoperfused skeletal muscles of adult rodents after gene transfer using AAV vectors induces the formation of a large set of new capillaries and small arteries. Notably, this process is accompanied by the massive infiltration by mononuclear cells. This observation raises the possibility that these cellsmight represent circulating progenitors that are eventually incorporated in the newly formed vessels. Here we explore this possibility by exploiting 4 different experimental models based on (a) the transplantation of male bone marrow into female recipients; (b) the transplantation of Tie2- GFP transgenic bone marrow; (c) the transplantation of bone marrow in the presence of erythropoietin (EPO), a mobilizer of endothelial progenitor cells (EPCs); and (d) the reimplantation of ex vivo–expanded EPCs. In all 4 models, VEGF acted as a powerful attractor of bone marrow–derived mononuclear cells, bearing different myeloid and endothelial markers proper of the EPCs to the sites of neovascularization. In no case, however, were the attracted cells incorporated in the newly formed vasculature. These observations indicate that new blood vessel formation induced by VEGF occurs through bona fide sprouting angiogenesis; the contribution of the infiltrating bone marrow–derived cells to this process still remains enigmatic.

Bone marrow mononuclear cells are recruited to the sites of VEGF-induced neovascularization but are not incorporated into the newly formed vessels

ZACCHIGNA S;GIACCA, MAURO
2006-01-01

Abstract

Vascular endothelial growth factor (VEGF) is a key regulator of blood vessel formation during both vasculogenesis and angiogenesis. The prolonged expression of VEGF in the normoperfused skeletal muscles of adult rodents after gene transfer using AAV vectors induces the formation of a large set of new capillaries and small arteries. Notably, this process is accompanied by the massive infiltration by mononuclear cells. This observation raises the possibility that these cellsmight represent circulating progenitors that are eventually incorporated in the newly formed vessels. Here we explore this possibility by exploiting 4 different experimental models based on (a) the transplantation of male bone marrow into female recipients; (b) the transplantation of Tie2- GFP transgenic bone marrow; (c) the transplantation of bone marrow in the presence of erythropoietin (EPO), a mobilizer of endothelial progenitor cells (EPCs); and (d) the reimplantation of ex vivo–expanded EPCs. In all 4 models, VEGF acted as a powerful attractor of bone marrow–derived mononuclear cells, bearing different myeloid and endothelial markers proper of the EPCs to the sites of neovascularization. In no case, however, were the attracted cells incorporated in the newly formed vasculature. These observations indicate that new blood vessel formation induced by VEGF occurs through bona fide sprouting angiogenesis; the contribution of the infiltrating bone marrow–derived cells to this process still remains enigmatic.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/1694592
 Avviso

Registrazione in corso di verifica.
La registrazione di questo prodotto non è ancora stata validata in ArTS.

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 136
  • ???jsp.display-item.citation.isi??? 129
social impact