The report presents an exhaustive review of the recent attempt to overcome the difficulties that standard quantum mechanics meets in accounting for the measurement (or macro-objectification) problem, an attempt based on the consideration of nonlinear and stochastic modifications of the Schrödinger equation. The proposed new dynamics is characterized by the feature of not contradicting any known fact about microsystems and of accounting, on the basis of a unique, universal dynamical principle, for wavepacket reduction and for the classical behavior of macroscopic systems. We recall the motivations for the new approach and we briefly review the other proposals to circumvent the above mentioned difficulties which appeared in the literature. In this way we make clear the conceptual and historical context characterizing the new approach. After having reviewed the mathematical techniques (stochastic differential calculus) which are essential for the rigorous and precise formulation of the new dynamics, we discuss in great detail its implications and we stress its relevant conceptual achievements. The new proposal requires also to work out an appropriate interpretation; a procedure which leads us to a reconsideration of many important issues about the conceptual status of theories based on a genuinely Hilbert space description of natural processes. Attention is also paid to many problems which are naturally raised by the dynamical reduction program. In particular we discuss the possibility and the problems one meets in trying to develop an analogous formalism for the relativistic case. Finally we discuss the experimental implications of the new dynamics for various physical processes which should allow, in principle, to test it against quantum mechanics. The review covers the work which has been done in the last 15 years by various scientists and the lively debate which has accompanied the elaboration of the new proposal.

Dynamical reduction models

BASSI, ANGELO;GHIRARDI, GIANCARLO
2003

Abstract

The report presents an exhaustive review of the recent attempt to overcome the difficulties that standard quantum mechanics meets in accounting for the measurement (or macro-objectification) problem, an attempt based on the consideration of nonlinear and stochastic modifications of the Schrödinger equation. The proposed new dynamics is characterized by the feature of not contradicting any known fact about microsystems and of accounting, on the basis of a unique, universal dynamical principle, for wavepacket reduction and for the classical behavior of macroscopic systems. We recall the motivations for the new approach and we briefly review the other proposals to circumvent the above mentioned difficulties which appeared in the literature. In this way we make clear the conceptual and historical context characterizing the new approach. After having reviewed the mathematical techniques (stochastic differential calculus) which are essential for the rigorous and precise formulation of the new dynamics, we discuss in great detail its implications and we stress its relevant conceptual achievements. The new proposal requires also to work out an appropriate interpretation; a procedure which leads us to a reconsideration of many important issues about the conceptual status of theories based on a genuinely Hilbert space description of natural processes. Attention is also paid to many problems which are naturally raised by the dynamical reduction program. In particular we discuss the possibility and the problems one meets in trying to develop an analogous formalism for the relativistic case. Finally we discuss the experimental implications of the new dynamics for various physical processes which should allow, in principle, to test it against quantum mechanics. The review covers the work which has been done in the last 15 years by various scientists and the lively debate which has accompanied the elaboration of the new proposal.
http://www.sciencedirect.com/science/article/pii/S0370157303001030
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0370157303001030-main.pdf

non disponibili

Tipologia: Documento in Versione Editoriale
Licenza: Digital Rights Management non definito
Dimensione 1.29 MB
Formato Adobe PDF
1.29 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
0302164-1.pdf

accesso aperto

Tipologia: Bozza finale post-referaggio (post-print)
Licenza: Creative commons
Dimensione 1.2 MB
Formato Adobe PDF
1.2 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11368/1694651
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 60
  • ???jsp.display-item.citation.isi??? 61
social impact