We consider the asymptotic behaviour of the solutions of the homogeneous Dirichlet problem for a nonlinear degenerate parabolic equation related to the porous medium equation in a noncylindrical domain in space-time shrinking to a point. The study is motivated by the classical analysis of regular and irregular points for the heat equation. We describe the asymptotics of the maximal solution approaching the vertex by means of matched asymptotic expansion techniques.

Approaching a vertex in a shrinking domain under a nonlinear flow

UGHI, MAURA;
2004-01-01

Abstract

We consider the asymptotic behaviour of the solutions of the homogeneous Dirichlet problem for a nonlinear degenerate parabolic equation related to the porous medium equation in a noncylindrical domain in space-time shrinking to a point. The study is motivated by the classical analysis of regular and irregular points for the heat equation. We describe the asymptotics of the maximal solution approaching the vertex by means of matched asymptotic expansion techniques.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/1694677
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact