The expression of many cellular genes is modulated by DNA methylation and histone acetylation. These processes can influence malignant cell transformation and are also responsible for the silencing of DNA constructs introduced into mammalian cells for therapeutic or research purposes. As a better understanding of these biological processes may contribute to the development of novel cancer treatments and to study the complex mechanisms regulating gene silencing, we established a cellular system suitable to dissect the mechanisms regulating DNA methylation and histone acetylation. For this purpose, we stably transfected the neuroblastoma cell line U87 with a cytomegalovirus promoter-driven reporter gene construct whose expression was analyzed following treatment with the DNA methylation inhibitor 50-aza-20-deoxycytidine or histone deacetylation inhibitor trichostatin A. Both substances reactivated the silenced cytomegalovirus promoter, but with different reaction kinetics. Furthermore, whereas the kinetics of reactivation by trichostatin A did not substantially change over the time range considered (5 days), reactivation induced by 50-aza-20-deoxycytidine showed profound differences between day 1 and longer time points. We showed that this effect is related to the down-regulation of DNA replication by 50-aza-20-deoxycytidine. Finally, we have shown that the simultaneous administration of trichostatin A and 50-aza-20-deoxycytidine results in reactivation of the CMV promoter according to a cooperative, not synergistic or additive, mechanism. In conclusion, our cellular system should represent a powerful tool to investigate the complex mechanisms regulating gene silencing and to identify new anticancer drugs.

G. Grassi, P. Maccaroni R. Meyer H. Kaiser, E. D’Ambrosio, E. Pascale, M. Grassi, A.Kuhn, P. Di Nardo, R. Kandolf and J-H Küpper

GRASSI, GABRIELE;GRASSI, Mario;
2003

Abstract

The expression of many cellular genes is modulated by DNA methylation and histone acetylation. These processes can influence malignant cell transformation and are also responsible for the silencing of DNA constructs introduced into mammalian cells for therapeutic or research purposes. As a better understanding of these biological processes may contribute to the development of novel cancer treatments and to study the complex mechanisms regulating gene silencing, we established a cellular system suitable to dissect the mechanisms regulating DNA methylation and histone acetylation. For this purpose, we stably transfected the neuroblastoma cell line U87 with a cytomegalovirus promoter-driven reporter gene construct whose expression was analyzed following treatment with the DNA methylation inhibitor 50-aza-20-deoxycytidine or histone deacetylation inhibitor trichostatin A. Both substances reactivated the silenced cytomegalovirus promoter, but with different reaction kinetics. Furthermore, whereas the kinetics of reactivation by trichostatin A did not substantially change over the time range considered (5 days), reactivation induced by 50-aza-20-deoxycytidine showed profound differences between day 1 and longer time points. We showed that this effect is related to the down-regulation of DNA replication by 50-aza-20-deoxycytidine. Finally, we have shown that the simultaneous administration of trichostatin A and 50-aza-20-deoxycytidine results in reactivation of the CMV promoter according to a cooperative, not synergistic or additive, mechanism. In conclusion, our cellular system should represent a powerful tool to investigate the complex mechanisms regulating gene silencing and to identify new anticancer drugs.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11368/1695195
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 70
  • ???jsp.display-item.citation.isi??? ND
social impact