We construct spectral triples on all Podles ́ quantum 2-spheres. These noncommutative geometries are equivariant for a left action of regular, even and of metric dimension 2. They are all isospectral to the undeformed round geometry of the sphere S2. There is also an equivariant real structure for which both the commutant property and the first order condition for the Dirac operators are valid up to infinitesimals of arbitrary order.
Titolo: | Dirac operators on all Podles quantum spheres | |
Autori: | ||
Data di pubblicazione: | 2007 | |
Rivista: | ||
Abstract: | We construct spectral triples on all Podles ́ quantum 2-spheres. These noncommutative geometries are equivariant for a left action of regular, even and of metric dimension 2. They are all isospectral to the undeformed round geometry of the sphere S2. There is also an equivariant real structure for which both the commutant property and the first order condition for the Dirac operators are valid up to infinitesimals of arbitrary order. | |
Handle: | http://hdl.handle.net/11368/1695879 | |
Appare nelle tipologie: | 1.1 Articolo in Rivista |
File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.