We consider solutions $u = u(x,t)$, in a neighbourhood of $(x,t) =(0,0)$, to a parabolic differential equation with variable coefficients depending on space and time variables. We assume that the coefficients in the principal part are Lipschitz continuous and that those in the lower order terms are bounded. We prove that, if $u( \cdot,0)$ vanishes of infinite order at $x=0$, then $u( \cdot ,0) \equiv 0$.

Remark on the strong unique continuation property for parabolic operators

ALESSANDRINI, GIOVANNI;
2004

Abstract

We consider solutions $u = u(x,t)$, in a neighbourhood of $(x,t) =(0,0)$, to a parabolic differential equation with variable coefficients depending on space and time variables. We assume that the coefficients in the principal part are Lipschitz continuous and that those in the lower order terms are bounded. We prove that, if $u( \cdot,0)$ vanishes of infinite order at $x=0$, then $u( \cdot ,0) \equiv 0$.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/1696087
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 16
social impact