We prove the existence of two unbounded sequences of strictly positive solutions, obtained respectively as minimum and saddle points of the associated action functional, of the elliptic problem $$ \left\{ \begin{array}{cl} -\Delta u = f(x,u) & \mbox{ in }\, \Omega, \\ u = 0 & \mbox{ on }\, \partial \Omega, \end{array} \right. $$ assuming that an oscillatory behaviour at $+\infty$ of $s^{-2} \int_0^s f(x, \xi) d \xi$ occurs locally in $\Omega$.

Positive solutions of elliptic problems with locally oscillating nonlinearities

OBERSNEL, Franco;OMARI, PIERPAOLO
2006-01-01

Abstract

We prove the existence of two unbounded sequences of strictly positive solutions, obtained respectively as minimum and saddle points of the associated action functional, of the elliptic problem $$ \left\{ \begin{array}{cl} -\Delta u = f(x,u) & \mbox{ in }\, \Omega, \\ u = 0 & \mbox{ on }\, \partial \Omega, \end{array} \right. $$ assuming that an oscillatory behaviour at $+\infty$ of $s^{-2} \int_0^s f(x, \xi) d \xi$ occurs locally in $\Omega$.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/1697222
 Avviso

Registrazione in corso di verifica.
La registrazione di questo prodotto non è ancora stata validata in ArTS.

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 27
social impact