In [D. Breda, S. Maset, and R. Vermiglio, IMA J. Numer. Anal., 24 (2004), pp. 1– 19.] and [D. Breda, The Infinitesimal Generator Approach for the Computation of Characteristic Roots for Delay Differential Equations Using BDF Methods, Research report UDMI RR17/2002, Dipartimento di Matematica e Informatica, Universit`a degli Studi di Udine, Udine, Italy, 2002.] the authors proposed to compute the characteristic roots of delay differential equations (DDEs) with multiple discrete and distributed delays by approximating the derivative in the infinitesimal generator of the solution operator semigroup by Runge–Kutta (RK) and linear multistep (LMS) methods, respectively. In this work the same approach is proposed in a new version based on pseudospectral differencing techniques. We prove the “spectral accuracy” convergence behavior typical of pseudospectral schemes, as also illustrated by some numerical experiments.

Pseudospectral differencing methods for characteristic roots of delay differential equations

MASET, STEFANO;
2005-01-01

Abstract

In [D. Breda, S. Maset, and R. Vermiglio, IMA J. Numer. Anal., 24 (2004), pp. 1– 19.] and [D. Breda, The Infinitesimal Generator Approach for the Computation of Characteristic Roots for Delay Differential Equations Using BDF Methods, Research report UDMI RR17/2002, Dipartimento di Matematica e Informatica, Universit`a degli Studi di Udine, Udine, Italy, 2002.] the authors proposed to compute the characteristic roots of delay differential equations (DDEs) with multiple discrete and distributed delays by approximating the derivative in the infinitesimal generator of the solution operator semigroup by Runge–Kutta (RK) and linear multistep (LMS) methods, respectively. In this work the same approach is proposed in a new version based on pseudospectral differencing techniques. We prove the “spectral accuracy” convergence behavior typical of pseudospectral schemes, as also illustrated by some numerical experiments.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/1697478
 Avviso

Registrazione in corso di verifica.
La registrazione di questo prodotto non è ancora stata validata in ArTS.

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 227
  • ???jsp.display-item.citation.isi??? ND
social impact