The potential of a sustained release formulation for paracetamol produced by melt pelletisation was investigated. The chosen formulation was based on the combination of stearic acid as a melting binder and anhydrous lactose as a filler. After determination of the size distribution, the pellet characterisation included scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), specific surface area and true density determination. Hence, the in vitro release from every single size fraction (2000, 1250, 800, 630, ,630 mm) was evaluated and the release mechanism was analysed with the help of an appropriate mathematical model. The results of drug content and superficial atomic composition were found to be constant in all pellets size fractions, attesting the ability of melt pelletisation in a high shear mixer to form a product with homogeneous composition. The mathematical model is built on the hypotheses that drug diffusion and solid drug dissolution in the release environment are the key phenomena affecting drug release kinetics. Smaller classes apart (particles are not perfectly spherical), the comparison between model best fitting and experimental data indicated the reasonability of these hypotheses. Moreover, model reliability is proved by its ability of predicting drug release from a known mixture of the above mentioned particles classes.

Preparation and evaluation of a melt pelletised paracetamol/stearic acid sustained release delivery system.

GRASSI, Mario;VOINOVICH, DARIO;MONEGHINI, MARIAROSA;PERISSUTTI, Beatrice;
2003

Abstract

The potential of a sustained release formulation for paracetamol produced by melt pelletisation was investigated. The chosen formulation was based on the combination of stearic acid as a melting binder and anhydrous lactose as a filler. After determination of the size distribution, the pellet characterisation included scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), specific surface area and true density determination. Hence, the in vitro release from every single size fraction (2000, 1250, 800, 630, ,630 mm) was evaluated and the release mechanism was analysed with the help of an appropriate mathematical model. The results of drug content and superficial atomic composition were found to be constant in all pellets size fractions, attesting the ability of melt pelletisation in a high shear mixer to form a product with homogeneous composition. The mathematical model is built on the hypotheses that drug diffusion and solid drug dissolution in the release environment are the key phenomena affecting drug release kinetics. Smaller classes apart (particles are not perfectly spherical), the comparison between model best fitting and experimental data indicated the reasonability of these hypotheses. Moreover, model reliability is proved by its ability of predicting drug release from a known mixture of the above mentioned particles classes.
JOURNAL OF CONTROLLED RELEASE
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11368/1698869
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 34
  • ???jsp.display-item.citation.isi??? 27
social impact