We study positive solutions $u$ to $\Delta u+f(u)=0$ in $\Omega$, $u=0$ on $\partial\Omega$, and we address the following question: if $\Omega$ is a small perturbation of a ball, is $u$ a small perturbation of a radially symmetric function? We prove two theorems which give an affirmative answer under different assumptions on the non-linearity $f$ and on the topologies in which perturbations are considered.

An approximate Gidas-Ni-Nirenberg theorem

ROSSET, EDI
1994-01-01

Abstract

We study positive solutions $u$ to $\Delta u+f(u)=0$ in $\Omega$, $u=0$ on $\partial\Omega$, and we address the following question: if $\Omega$ is a small perturbation of a ball, is $u$ a small perturbation of a radially symmetric function? We prove two theorems which give an affirmative answer under different assumptions on the non-linearity $f$ and on the topologies in which perturbations are considered.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/1700102
 Avviso

Registrazione in corso di verifica.
La registrazione di questo prodotto non è ancora stata validata in ArTS.

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact