Most antimicrobial peptides (AMPs) impair the viability of target bacteria by permeabilizing bacterial membranes. However, the proline-rich AMPs have been shown to kill susceptible organisms without causing significant membrane perturbation and may act by inhibiting the activity of bacterial targets. To gain initial insight into the events that follow interaction of a proline-rich peptide with bacterial cells, we used DNA macroarray technology to monitor transcriptional alterations of Escherichia coli in response to challenge with a subinhibitory concentration of the proline-rich Bac7(1-35). Substantial changes in the expression levels of 70 bacterial genes from various functional categories were detected. Among these, 26 genes showed decreased expression, while 44 genes, including genes that are potentially involved in bacterial resistance to antimicrobials, showed increased expression. The generation of a transcriptional response under the experimental conditions used is consistent with the ability of Bac7(1-35) to interact with bacterial components and affect biological processes in this organism.
Genome-wide Transcriptional profiling of the Escherichia coli response to a Proline-rich antimicrobial peptide
SCOCCHI, MARCO;
2004-01-01
Abstract
Most antimicrobial peptides (AMPs) impair the viability of target bacteria by permeabilizing bacterial membranes. However, the proline-rich AMPs have been shown to kill susceptible organisms without causing significant membrane perturbation and may act by inhibiting the activity of bacterial targets. To gain initial insight into the events that follow interaction of a proline-rich peptide with bacterial cells, we used DNA macroarray technology to monitor transcriptional alterations of Escherichia coli in response to challenge with a subinhibitory concentration of the proline-rich Bac7(1-35). Substantial changes in the expression levels of 70 bacterial genes from various functional categories were detected. Among these, 26 genes showed decreased expression, while 44 genes, including genes that are potentially involved in bacterial resistance to antimicrobials, showed increased expression. The generation of a transcriptional response under the experimental conditions used is consistent with the ability of Bac7(1-35) to interact with bacterial components and affect biological processes in this organism.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.