A multi-level model allows the possibility of marginalization across levels in different ways, yielding more than one possible marginal likelihood. Since log-likelihoods are often used in classical model comparison, the question to ask is which likelihood should be chosen for a given model. The authors employ a Bayesian framework to shed some light on qualitative comparison of the likelihoods associated with a given model. They connect these results to related issues of the effective number of parameters, penalty function, and consistent definition of a likelihood-based model choice criterion. In particular, with a two-stage model they show that, very generally, regardless of hyperprior specification or how much data is collected or what the realized values are, a priori, the first-stage likelihood is expected to be smaller than the marginal likelihood. A posteriori, these expectations are reversed and the disparities worsen with increasing sample size and with increasing number of model levels.

Inequalities between expected marginal log-likelihoods, with implications for likelihood-based model complexity and comparison measures

TREVISANI, MATILDE;
2003-01-01

Abstract

A multi-level model allows the possibility of marginalization across levels in different ways, yielding more than one possible marginal likelihood. Since log-likelihoods are often used in classical model comparison, the question to ask is which likelihood should be chosen for a given model. The authors employ a Bayesian framework to shed some light on qualitative comparison of the likelihoods associated with a given model. They connect these results to related issues of the effective number of parameters, penalty function, and consistent definition of a likelihood-based model choice criterion. In particular, with a two-stage model they show that, very generally, regardless of hyperprior specification or how much data is collected or what the realized values are, a priori, the first-stage likelihood is expected to be smaller than the marginal likelihood. A posteriori, these expectations are reversed and the disparities worsen with increasing sample size and with increasing number of model levels.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/1702245
 Avviso

Registrazione in corso di verifica.
La registrazione di questo prodotto non è ancora stata validata in ArTS.

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 9
social impact