Human β-defensin 3 (hBD3) is a highly charged (+11) cationic defence peptide, which retains activity against staphylococci even at elevated salt concentrations. We studied the antibiotic mode of action of hBD3 against Staphylococcus aureus SG511, using whole-cell assays and analysing the transcriptional response to hBD3 treatment. hBD3 caused rapid killing and simultaneously blocked all biosynthetic pathways, however, significant depolarisation was not observed and permeabilisation of the membrane was incomplete. The transcriptional response pattern was in part similar to those of strongly cationic amphiphiles, e.g. in that anaerobic energy production was downregulated. Significantly, part of the staphylococcal cell wall stress stimulon were upregulated. The most prominent microbial counterstrategy appears to be based on the upregulation of ABC transporters possibly functioning in detoxification of the membrane environment; the transporter genes were highly upregulated in both, a short-term response and a long-term adaptation experiment. Knockout of the most highly induced transporter VraDE significantly enhanced hBD3 susceptibility. We propose that the antibiotic activity of hBD3 is based on interference with the organisation over space and time of membrane-bound multienzyme machineries such as the electron transport chain and, in particular, the cell wall biosynthesis complex rather than on formation of defined transmembrane pores. © 2008 Elsevier GmbH. All rights reserved.

Mode of action of human β-defensin 3 (hBD3) against Staphylococcus aureus and transcriptional analysis of responses to defensin challenge

TOSSI, ALESSANDRO;
2008-01-01

Abstract

Human β-defensin 3 (hBD3) is a highly charged (+11) cationic defence peptide, which retains activity against staphylococci even at elevated salt concentrations. We studied the antibiotic mode of action of hBD3 against Staphylococcus aureus SG511, using whole-cell assays and analysing the transcriptional response to hBD3 treatment. hBD3 caused rapid killing and simultaneously blocked all biosynthetic pathways, however, significant depolarisation was not observed and permeabilisation of the membrane was incomplete. The transcriptional response pattern was in part similar to those of strongly cationic amphiphiles, e.g. in that anaerobic energy production was downregulated. Significantly, part of the staphylococcal cell wall stress stimulon were upregulated. The most prominent microbial counterstrategy appears to be based on the upregulation of ABC transporters possibly functioning in detoxification of the membrane environment; the transporter genes were highly upregulated in both, a short-term response and a long-term adaptation experiment. Knockout of the most highly induced transporter VraDE significantly enhanced hBD3 susceptibility. We propose that the antibiotic activity of hBD3 is based on interference with the organisation over space and time of membrane-bound multienzyme machineries such as the electron transport chain and, in particular, the cell wall biosynthesis complex rather than on formation of defined transmembrane pores. © 2008 Elsevier GmbH. All rights reserved.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/1702280
 Avviso

Registrazione in corso di verifica.
La registrazione di questo prodotto non è ancora stata validata in ArTS.

Citazioni
  • ???jsp.display-item.citation.pmc??? 31
  • Scopus 62
  • ???jsp.display-item.citation.isi??? ND
social impact