We prove that the only finite non-abelian simple groups G which possibly admit an action on a Z_2-homology 3-sphere are the linear fractional groups PSL(2, q), for an odd prime power q (and the dodecahedral group A_5 isomorphic to PSL(2, 5) in the case of an integer homology 3-sphere), by showing that G has dihedral Sylow 2-subgroups and applying the Gorenstein–Walter classification of such groups. We also discuss the minimal dimension of a homology sphere on which a linear fractional group PSL(2, q) acts.

On finite simple groups acting on integer and mod 2 homology 3-spheres

MECCHIA, MATTIA;ZIMMERMANN, BRUNO
2006-01-01

Abstract

We prove that the only finite non-abelian simple groups G which possibly admit an action on a Z_2-homology 3-sphere are the linear fractional groups PSL(2, q), for an odd prime power q (and the dodecahedral group A_5 isomorphic to PSL(2, 5) in the case of an integer homology 3-sphere), by showing that G has dihedral Sylow 2-subgroups and applying the Gorenstein–Walter classification of such groups. We also discuss the minimal dimension of a homology sphere on which a linear fractional group PSL(2, q) acts.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/1703123
 Avviso

Registrazione in corso di verifica.
La registrazione di questo prodotto non è ancora stata validata in ArTS.

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 12
social impact