Metal-organic coordination interactions are prime candidates for the formation of self-assembled, nanometer-scale periodic networks with room-temperature structural stability. We present X-ray photoelectron spectroscopy measurements of such networks at the Cu(100) surface which provide clear evidence for genuine metal-organic coordination. This is evident as binding energy shifts in the O 1s and Fe 3p photoelectron peaks, corresponding to O and Fe atoms involved in the coordination. Our results provide the first clear evidence for charge-transfer coordination in metal-organic networks at surfaces and demonstrate a well-defined oxidation state for the coordinated Fe ions.

Metal-Organic coordination interactions in Fe-Teraphthalic acid networks on Cu(100)

BARALDI, Alessandro;
2008-01-01

Abstract

Metal-organic coordination interactions are prime candidates for the formation of self-assembled, nanometer-scale periodic networks with room-temperature structural stability. We present X-ray photoelectron spectroscopy measurements of such networks at the Cu(100) surface which provide clear evidence for genuine metal-organic coordination. This is evident as binding energy shifts in the O 1s and Fe 3p photoelectron peaks, corresponding to O and Fe atoms involved in the coordination. Our results provide the first clear evidence for charge-transfer coordination in metal-organic networks at surfaces and demonstrate a well-defined oxidation state for the coordinated Fe ions.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/1715247
 Avviso

Registrazione in corso di verifica.
La registrazione di questo prodotto non è ancora stata validata in ArTS.

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 136
  • ???jsp.display-item.citation.isi??? 132
social impact