BackgroundDistinguishing ingested particles from those attached to the cell surface is an essential requirement when performing quantitative studies of phagocytosis. In the present report, we describe a simple, sensitive and reliable flow cytofluorometric method that achieves this goal in a Candida albicans-human neutrophils (PMN) system.MethodsThe assay is based on the observation that the vital dye trypan blue (TB), while quenching the green fluorescence of fluorescein-labeled C. albicans, causes them to fluoresce red. PMN were incubated with fluorescein-labeled yeast particles for the required time. Aliquots of the incubation mixtures were then promptly diluted with an equal volume of a TB solution at pH 4.0, and subsequently analyzed by flow cytometry for green and red fluorescence.ResultsSince TB does not penetrate into the cells, ingested yeasts retain their green fluorescence, while membrane-bound particles display a red fluorescence.ConclusionsOur fluorescence flow cytometric method enables to simultaneously distinguish, within the leukocyte population, cell subsets with attached and ingested yeast particles. Its major features are: (1) accuracy, sensitivity and reproducibility; (2) no further sample manipulations after completion of phagocytosis; (3) possibility of counting free, attached and internalized yeast particles; and (4) use of a nontoxic reagent (TB).

A single step, sensitive flow cytofluorometric assay for the simultaneous assessment of membrane bound and ingested Candida albicans in phagocytosing neutrophils

BUSETTO, SARA;TREVISAN, ELISA;PATRIARCA, PIERLUIGI;MENEGAZZI, RENZO
2004

Abstract

BackgroundDistinguishing ingested particles from those attached to the cell surface is an essential requirement when performing quantitative studies of phagocytosis. In the present report, we describe a simple, sensitive and reliable flow cytofluorometric method that achieves this goal in a Candida albicans-human neutrophils (PMN) system.MethodsThe assay is based on the observation that the vital dye trypan blue (TB), while quenching the green fluorescence of fluorescein-labeled C. albicans, causes them to fluoresce red. PMN were incubated with fluorescein-labeled yeast particles for the required time. Aliquots of the incubation mixtures were then promptly diluted with an equal volume of a TB solution at pH 4.0, and subsequently analyzed by flow cytometry for green and red fluorescence.ResultsSince TB does not penetrate into the cells, ingested yeasts retain their green fluorescence, while membrane-bound particles display a red fluorescence.ConclusionsOur fluorescence flow cytometric method enables to simultaneously distinguish, within the leukocyte population, cell subsets with attached and ingested yeast particles. Its major features are: (1) accuracy, sensitivity and reproducibility; (2) no further sample manipulations after completion of phagocytosis; (3) possibility of counting free, attached and internalized yeast particles; and (4) use of a nontoxic reagent (TB).
http://onlinelibrary.wiley.com/doi/10.1002/cyto.a.20014/abstract;jsessionid=E046165CEE01718052D1FA3433FFE745.d01t02
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/1717483
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact