We define Gr ̈bner bases for submodules of Zn and o characterize minimal and reduced bases combinatorially in terms of minimal elements of suitable partially ordered subsets of Zn . Then we show that Gr ̈bner bases for saturated pure binomial o ideals of K[x1 , . . . , xn ], char (K) = 2, can be immediately de- rived from Gr ̈bner bases for appropriate corresponding submod- o ules of Zn . This suggests the possibility of calculating the Gr ̈bner o bases of the ideals without using the Buchberger algorithm

Groebner bases for submodules of Z^n

LOGAR, ALESSANDRO
2007-01-01

Abstract

We define Gr ̈bner bases for submodules of Zn and o characterize minimal and reduced bases combinatorially in terms of minimal elements of suitable partially ordered subsets of Zn . Then we show that Gr ̈bner bases for saturated pure binomial o ideals of K[x1 , . . . , xn ], char (K) = 2, can be immediately de- rived from Gr ̈bner bases for appropriate corresponding submod- o ules of Zn . This suggests the possibility of calculating the Gr ̈bner o bases of the ideals without using the Buchberger algorithm
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/1747249
 Avviso

Registrazione in corso di verifica.
La registrazione di questo prodotto non è ancora stata validata in ArTS.

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact