We introduce the notion of weak continuity relative to an interval on a topological space (X, τ). Then we show that a weakly continuous interval order on a second countable topological space (X, τ) is represented by a pair (u, v) of continuous real-valued functions. In this way we generalize the famous continuous utility representation theorem of Debreu according to which a total preorder on a second countable topological space (X, τ) admits a continuous utility representation.

A note on continuity and continuous representability of interval orders

BOSI, GIANNI
2008-01-01

Abstract

We introduce the notion of weak continuity relative to an interval on a topological space (X, τ). Then we show that a weakly continuous interval order on a second countable topological space (X, τ) is represented by a pair (u, v) of continuous real-valued functions. In this way we generalize the famous continuous utility representation theorem of Debreu according to which a total preorder on a second countable topological space (X, τ) admits a continuous utility representation.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/1834220
 Avviso

Registrazione in corso di verifica.
La registrazione di questo prodotto non è ancora stata validata in ArTS.

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact