Objectives: The purpose of this study was to measure the development of contraction stress of three composite resin restorative materials during photo-polymerization: a micro-hybrid composite (Filtek Z250, 3M ESPE, St. Paul, MN, USA); a nano-filled composite (Filtek Supreme, 3M ESPE, St. Paul, MN, USA); and a low-shrinkage composite (AElite LS, Bisco Inc., Schaumburg, IL, USA). METHODS: Curing shrinkage stress was measured using a stress-analyzer. Composites were polymerized with a halogen-curing unit (VIP, Bisco Inc., Schaumburg, IL, USA) for 40 s. The contraction force (N) generated during polymerization was continuously recorded for 150 s after photo-initiation. Contraction stress (MPa) was calculated at 20, 40, 60 and 150 s. Data were statistically analyzed. RESULTS: The low-shrinkage composite AElite LS exhibited the lowest stress values compared to other materials (p<0.05). Statistical analysis did not show significant differences between Filtek Z250 and Filtek Supreme. SIGNIFICANCE: The low-shrinkage composite showed lower contraction stress than micro-hybrid and nano-filled composite. Ideally, non-shrinking resins would represent the ultimate solution to overcome polymerization contraction and stress-related problems.

Assessment of polymerization contraction stress of three composite resins

CADENARO, MILENA;BIASOTTO, MATTEO;SCUOR, NICOLA;BRESCHI, LORENZO;DI LENARDA, Roberto
2008

Abstract

Objectives: The purpose of this study was to measure the development of contraction stress of three composite resin restorative materials during photo-polymerization: a micro-hybrid composite (Filtek Z250, 3M ESPE, St. Paul, MN, USA); a nano-filled composite (Filtek Supreme, 3M ESPE, St. Paul, MN, USA); and a low-shrinkage composite (AElite LS, Bisco Inc., Schaumburg, IL, USA). METHODS: Curing shrinkage stress was measured using a stress-analyzer. Composites were polymerized with a halogen-curing unit (VIP, Bisco Inc., Schaumburg, IL, USA) for 40 s. The contraction force (N) generated during polymerization was continuously recorded for 150 s after photo-initiation. Contraction stress (MPa) was calculated at 20, 40, 60 and 150 s. Data were statistically analyzed. RESULTS: The low-shrinkage composite AElite LS exhibited the lowest stress values compared to other materials (p<0.05). Statistical analysis did not show significant differences between Filtek Z250 and Filtek Supreme. SIGNIFICANCE: The low-shrinkage composite showed lower contraction stress than micro-hybrid and nano-filled composite. Ideally, non-shrinking resins would represent the ultimate solution to overcome polymerization contraction and stress-related problems.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/1909338
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 29
  • ???jsp.display-item.citation.isi??? 26
social impact