In this paper, we deepen the theoretical study of the geometric structure of a balanced complex polytope (b.c.p.), which is the generalization of a real centrally symmetric polytope to the complex space. We also propose a constructive algorithm for the representation of its facets in terms of their associated linear functionals. The b.c.p.s are used, for example, as a tool for the computation of the joint spectral radius of families of matrices. For the representation of real polytopes, there exist wellknown algorithms such as, for example, the Beneath–Beyond method. Our purpose is to modify and adapt this method to the complex case by exploiting the geometric features of the b.c.p. However, due to the significant increase in the difficulty of the problem when passing from the real to the complex case, in this paper, we confine ourselves to examine the two-dimensional case. We also propose an algorithm for the computation of the norm the unit ball of which is a b.c.p.

The analysis and the representation of balanced complex polytopes in 2D

ZENNARO, MARINO
2009-01-01

Abstract

In this paper, we deepen the theoretical study of the geometric structure of a balanced complex polytope (b.c.p.), which is the generalization of a real centrally symmetric polytope to the complex space. We also propose a constructive algorithm for the representation of its facets in terms of their associated linear functionals. The b.c.p.s are used, for example, as a tool for the computation of the joint spectral radius of families of matrices. For the representation of real polytopes, there exist wellknown algorithms such as, for example, the Beneath–Beyond method. Our purpose is to modify and adapt this method to the complex case by exploiting the geometric features of the b.c.p. However, due to the significant increase in the difficulty of the problem when passing from the real to the complex case, in this paper, we confine ourselves to examine the two-dimensional case. We also propose an algorithm for the computation of the norm the unit ball of which is a b.c.p.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/1957327
 Avviso

Registrazione in corso di verifica.
La registrazione di questo prodotto non è ancora stata validata in ArTS.

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact