In this paper we study the rate of convergence of the Markov chain XnC1 D AXn C Bn.mod p/, where A is an integer invertible matrix, and fBngn is a sequence of independent and identically distributed integer vectors. If A has an eigenvalue of size 1, then n D O.p2/ steps are necessary and sufficient to have Xn sampling from a nearly uniform distribution.

Asymptotic behavior of an affine random recursion in (Z_p)^k defined by a matrix with an eigenvalue of size 1

ASCI, CLAUDIO
2009-01-01

Abstract

In this paper we study the rate of convergence of the Markov chain XnC1 D AXn C Bn.mod p/, where A is an integer invertible matrix, and fBngn is a sequence of independent and identically distributed integer vectors. If A has an eigenvalue of size 1, then n D O.p2/ steps are necessary and sufficient to have Xn sampling from a nearly uniform distribution.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2264351
 Avviso

Registrazione in corso di verifica.
La registrazione di questo prodotto non è ancora stata validata in ArTS.

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 2
social impact