We prove existence of global attractors for damped hyperbolic equations of the form $$\aligned \eps u_{tt}+\alpha(x) u_t+\beta(x)u- \sum_{ij}(a_{ij}(x) u_{x_j})_{x_i}&=f(x,u),\quad x\in \Omega, t\in[0,\infty[, u(x,t)&=0,\quad x\in \partial \Omega, t\in[,\infty[.\endaligned$$ on an unbounded domain $\Omega$, without smoothness assumptions on $\beta(\cdot)$, $a_{ij}(\cdot)$, $f(\cdot,u)$ and $\partial\Omega$, and $f(x,\cdot)$ having critical or subcritical growth.
Attractors for semilinear damped wave equations on arbitrary unbounded domains
PRIZZI, Martino;
2008-01-01
Abstract
We prove existence of global attractors for damped hyperbolic equations of the form $$\aligned \eps u_{tt}+\alpha(x) u_t+\beta(x)u- \sum_{ij}(a_{ij}(x) u_{x_j})_{x_i}&=f(x,u),\quad x\in \Omega, t\in[0,\infty[, u(x,t)&=0,\quad x\in \partial \Omega, t\in[,\infty[.\endaligned$$ on an unbounded domain $\Omega$, without smoothness assumptions on $\beta(\cdot)$, $a_{ij}(\cdot)$, $f(\cdot,u)$ and $\partial\Omega$, and $f(x,\cdot)$ having critical or subcritical growth.File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.