We discuss existence and multiplicity of bounded variation solutions of the mixed problem for the prescribed mean curvature equation$$-{\rm div } \Big({\nabla u}/{ \sqrt{1+{|\nabla u|}^2}}\Big) = f(x,u) \hbox{\, in $\Omega$},\quadu=0 \hbox{\, on $\Gamma_{D}$}, \quad \partial u / \partial \nu =0 \hbox{\, on $ \Gamma_{N}$}, $$where $\Gamma_{D} $ is an open subset of $\partial \Omega$ and $\Gamma_{N}=\partial \Omega\setminus \Gamma_{D}$. Our approach is based on variational techniques and a lower and upper solutions method specially developed for this problem.

Existence and multiplicity results for the prescribed mean curvature equation via lower and upper solutions

OBERSNEL, Franco;OMARI, PIERPAOLO
2009-01-01

Abstract

We discuss existence and multiplicity of bounded variation solutions of the mixed problem for the prescribed mean curvature equation$$-{\rm div } \Big({\nabla u}/{ \sqrt{1+{|\nabla u|}^2}}\Big) = f(x,u) \hbox{\, in $\Omega$},\quadu=0 \hbox{\, on $\Gamma_{D}$}, \quad \partial u / \partial \nu =0 \hbox{\, on $ \Gamma_{N}$}, $$where $\Gamma_{D} $ is an open subset of $\partial \Omega$ and $\Gamma_{N}=\partial \Omega\setminus \Gamma_{D}$. Our approach is based on variational techniques and a lower and upper solutions method specially developed for this problem.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2280921
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 30
  • ???jsp.display-item.citation.isi??? 30
social impact