RICH (Ring Imaging CHerenkov) counters for PID in the high momentum domain and in large acceptance experiments require photon detectors covering extended surface (several square meters) and able to accept Cherenkov photons in a wide angular range. An ideal approach is represented by gaseous photon detectors, which allow covering wide surfaces at affordable costs. The first generation of these detectors was based on the use of organic vapors. The second generation consists of CsI photocathodes and open geometry gaseous detectors (MWPC). In spite of the success of this approach, some limits of the technique arise from the bombardment of the photocathodes by the ions generated in the amplification process and by the photon feedback. A third generation of gaseous photon detectors using closed geometry, as those possible with multistage arrangements of micropattern gaseous detectors, can overcome the observed limitations. We have started an R&D programme to develop a Thick-GEM-based photon detector and we report about our initial studies

The quest for a third generation of gaseous photon detectors for Cherenkov imaging counters

BRADAMANTE, FRANCO;BRESSAN, Andrea;CILIBERTI, PIERO;DUIC, VENICIO;GIORGI, MARCELLO;LEVORATO, STEFANO;MARTIN, ANNA;PESARO, GIULIA;SBRIZZAI, GIULIO;SCHIAVON, PAOLO;SOZZI, FEDERICA;TAKEKAWA, STEFANO;
2009-01-01

Abstract

RICH (Ring Imaging CHerenkov) counters for PID in the high momentum domain and in large acceptance experiments require photon detectors covering extended surface (several square meters) and able to accept Cherenkov photons in a wide angular range. An ideal approach is represented by gaseous photon detectors, which allow covering wide surfaces at affordable costs. The first generation of these detectors was based on the use of organic vapors. The second generation consists of CsI photocathodes and open geometry gaseous detectors (MWPC). In spite of the success of this approach, some limits of the technique arise from the bombardment of the photocathodes by the ions generated in the amplification process and by the photon feedback. A third generation of gaseous photon detectors using closed geometry, as those possible with multistage arrangements of micropattern gaseous detectors, can overcome the observed limitations. We have started an R&D programme to develop a Thick-GEM-based photon detector and we report about our initial studies
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2294014
 Avviso

Registrazione in corso di verifica.
La registrazione di questo prodotto non è ancora stata validata in ArTS.

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 60
  • ???jsp.display-item.citation.isi??? 51
social impact