We explore generalizations of the pari-mutuel model (PMM), a formalization of an intuitive way of assessing an upper probability from a precise one. We discuss a naive extension of the PMM considered in insurance, compare the PMM with a related model, the Total Variation Model, and generalize the natural extension of the PMM introduced by P. Walley and other pertained formulae. The results are subsequently given a risk measurement interpretation: in particular it is shown that a known risk measure, Tail Value at Risk (TVaR), is derived from the PMM, and a coherent risk measure more general than TVaR from its imprecise version. We analyze further the conditions for coherence of a related risk measure, Conditional Tail Expectation. Conditioning with the PMM is investigated too, computing its natural extension, characterising its dilation and studying the weaker concept of imprecision increase.
Inference and risk measurement with the pari-mutuel model
PELESSONI, RENATO;VICIG, PAOLO;
2010-01-01
Abstract
We explore generalizations of the pari-mutuel model (PMM), a formalization of an intuitive way of assessing an upper probability from a precise one. We discuss a naive extension of the PMM considered in insurance, compare the PMM with a related model, the Total Variation Model, and generalize the natural extension of the PMM introduced by P. Walley and other pertained formulae. The results are subsequently given a risk measurement interpretation: in particular it is shown that a known risk measure, Tail Value at Risk (TVaR), is derived from the PMM, and a coherent risk measure more general than TVaR from its imprecise version. We analyze further the conditions for coherence of a related risk measure, Conditional Tail Expectation. Conditioning with the PMM is investigated too, computing its natural extension, characterising its dilation and studying the weaker concept of imprecision increase.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.