A new bioactive scaffold was prepared from a binary polysaccharide mixture composed of a polyanion (alginate) and a polycation (a lactose-modified chitosan, chitlac). Its potential use for articular chondrocytes encapsulation and cartilage reconstructive surgery applications has been studied. The hydrogel combines the ability of alginate to act as a 3D supporting structure with the capability of the second component (chitlac) to provide interactions with porcine articular chondrocytes. Physico-chemical characterization of the scaffold was accomplished by gel kinetics and compression measurements and demonstrated that alginate-chitlac mixture (AC-mixture) hydrogels exhibit better mechanical properties when compared with sole alginate hydrogels. Furthermore, biochemical and biological studies showed that these 3D scaffolds are able to maintain chondrocyte phenotype and particularly to significantly stimulate and promote chondrocyte growth and proliferation. In conclusion, the present study can be considered as a first step towards an engineered, biologically active scaffold for chondrocyte in vitro cultivation, expansion, and cell delivery.

Alginate/lactose-modified chitosan hydrogels: A bioactive biomaterial for chondrocyte encapsulation

MARSICH, ELEONORA;BORGOGNA, MASSIMILIANO ANTONIO;DONATI, IVAN;MOZETIC, PAMELA;VITTUR, FRANCO;PAOLETTI, SERGIO
2008-01-01

Abstract

A new bioactive scaffold was prepared from a binary polysaccharide mixture composed of a polyanion (alginate) and a polycation (a lactose-modified chitosan, chitlac). Its potential use for articular chondrocytes encapsulation and cartilage reconstructive surgery applications has been studied. The hydrogel combines the ability of alginate to act as a 3D supporting structure with the capability of the second component (chitlac) to provide interactions with porcine articular chondrocytes. Physico-chemical characterization of the scaffold was accomplished by gel kinetics and compression measurements and demonstrated that alginate-chitlac mixture (AC-mixture) hydrogels exhibit better mechanical properties when compared with sole alginate hydrogels. Furthermore, biochemical and biological studies showed that these 3D scaffolds are able to maintain chondrocyte phenotype and particularly to significantly stimulate and promote chondrocyte growth and proliferation. In conclusion, the present study can be considered as a first step towards an engineered, biologically active scaffold for chondrocyte in vitro cultivation, expansion, and cell delivery.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2298689
 Avviso

Registrazione in corso di verifica.
La registrazione di questo prodotto non è ancora stata validata in ArTS.

Citazioni
  • ???jsp.display-item.citation.pmc??? 16
  • Scopus 112
  • ???jsp.display-item.citation.isi??? 100
social impact