We discuss existence and multiplicity of positive solutions of the prescribed mean curvature problem\begin{equation*}-{\rm div } \Big({\nabla u}/{ \sqrt{1+{|\nabla u|}^2}}\Big) = \lambda f(x,u)\mbox{\, in $\Omega$},\qquadu=0 \mbox{\, on $\partial \Omega$},\end{equation*}in a general bounded domain $\Omega\subset\RR^N$, depending on the behaviour at zero or at infinity of $f(x,s)$, or of its potential $F(x,s)=\int_0^s f(x,t)\,dt$. Our main effort here is to describe, in a way as exhaustive as possible, all configurations of the limits of $F(x,s)/s^2$ at zero and of $F(x,s)/s$ at infinity, which yield the existence of one, two, three or infinitely many positive solutions. Either strong, or weak, or bounded variation solutions are considered. Our approach is variational and combines critical point theory, the lower and upper solutions method and elliptic regularization.

Positive solutions of the Dirichlet problem for the prescribed mean curvature equation

OBERSNEL, Franco;OMARI, PIERPAOLO
2010-01-01

Abstract

We discuss existence and multiplicity of positive solutions of the prescribed mean curvature problem\begin{equation*}-{\rm div } \Big({\nabla u}/{ \sqrt{1+{|\nabla u|}^2}}\Big) = \lambda f(x,u)\mbox{\, in $\Omega$},\qquadu=0 \mbox{\, on $\partial \Omega$},\end{equation*}in a general bounded domain $\Omega\subset\RR^N$, depending on the behaviour at zero or at infinity of $f(x,s)$, or of its potential $F(x,s)=\int_0^s f(x,t)\,dt$. Our main effort here is to describe, in a way as exhaustive as possible, all configurations of the limits of $F(x,s)/s^2$ at zero and of $F(x,s)/s$ at infinity, which yield the existence of one, two, three or infinitely many positive solutions. Either strong, or weak, or bounded variation solutions are considered. Our approach is variational and combines critical point theory, the lower and upper solutions method and elliptic regularization.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2300181
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 61
  • ???jsp.display-item.citation.isi??? 63
social impact