We study a class of new examples of congruences of lines of order one, i.e. the congruences associated to the completely exceptional Monge-Ampère equations. We prove that they are in general not linear, and that through a general point of the focal locus there passes a planar pencil of lines of the congruence. In particular, the completely exceptional Monge-Ampère equations are of Temple type.

On a class of first order congruences of lines

MEZZETTI, EMILIA
2009-01-01

Abstract

We study a class of new examples of congruences of lines of order one, i.e. the congruences associated to the completely exceptional Monge-Ampère equations. We prove that they are in general not linear, and that through a general point of the focal locus there passes a planar pencil of lines of the congruence. In particular, the completely exceptional Monge-Ampère equations are of Temple type.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2301424
 Avviso

Registrazione in corso di verifica.
La registrazione di questo prodotto non è ancora stata validata in ArTS.

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact