A well-known conjecture asserts that smooth threefolds X in P^5 are quadratically normal with the only exception of the Palatini scroll. As a corollary of a more general statement we obtain the following result, which is related to the previous conjecture: If X in P^5 is not quadratically normal, then its triple curve is reducible. Similar results are also given for higher dimensional varieties.

On the quadratic normality and the triple curve of three dimensional subvarieties of P^5

MEZZETTI, EMILIA;
2010-01-01

Abstract

A well-known conjecture asserts that smooth threefolds X in P^5 are quadratically normal with the only exception of the Palatini scroll. As a corollary of a more general statement we obtain the following result, which is related to the previous conjecture: If X in P^5 is not quadratically normal, then its triple curve is reducible. Similar results are also given for higher dimensional varieties.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2301425
 Avviso

Registrazione in corso di verifica.
La registrazione di questo prodotto non è ancora stata validata in ArTS.

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact