Abstract: We present a quantum-accurate multiscale study of how hydrogen-filled discoidal "platelet'' defects grow inside a silicon crystal. Dynamical simulations of a 10-nm-diameter platelet reveal that H-2 molecules form at its internal surfaces, diffuse, and dissociate at its perimeter, where they both induce and stabilize the breaking up of highly stressed silicon bonds. A buildup of H-2 internal pressure is neither needed for nor allowed by this stress-corrosion growth mechanism, at odds with previous models. Slow platelet growth up to micrometric sizes is predicted as a consequence, making atomically smooth crystal cleavage possible in implantation experiments.

Atomically Smooth Stress-Corrosion Cleavage of a Hydrogen-Implanted Crystal

DE VITA, ALESSANDRO
2010-01-01

Abstract

Abstract: We present a quantum-accurate multiscale study of how hydrogen-filled discoidal "platelet'' defects grow inside a silicon crystal. Dynamical simulations of a 10-nm-diameter platelet reveal that H-2 molecules form at its internal surfaces, diffuse, and dissociate at its perimeter, where they both induce and stabilize the breaking up of highly stressed silicon bonds. A buildup of H-2 internal pressure is neither needed for nor allowed by this stress-corrosion growth mechanism, at odds with previous models. Slow platelet growth up to micrometric sizes is predicted as a consequence, making atomically smooth crystal cleavage possible in implantation experiments.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2304434
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 28
social impact