Newborn rat oligodendrocyte cultures were investigated by scanning near-field optical microscope (SNOM), a versatile new tool able to map cell membranes in 3D and simultaneously obtain images of the cytoplasm. Topography, error, transmission and reflection signals were acquired to describe cell morphology with nanometer-scale resolution. Oligodendrocytes were studied as a model because their extensive membrane processes (typical of their physiological role in myelination) made them particularly suitable to test the sensitivity of the new method. Furthermore, we combined a classical histochemical method with SNOM, to identify specific intracellular proteins at high definition. In particular, with this technique, cytoskeleton elements of oligodendrocytes, such as microtubules, were observed with tubulin antibodies. Images obtained with SNOM were also compared with those from conventional scanning electron microscopy (SEM) and optical microscopy. Our results showed that SNOM allowed to ob

Novel approaches for scanning near-field optical microscopy imaging of oligodendrocytes in culture

TREVISAN, ELISA;VITA, FRANCESCA;ZABUCCHI, GIULIANO;ZWEYER, MARINA
2010-01-01

Abstract

Newborn rat oligodendrocyte cultures were investigated by scanning near-field optical microscope (SNOM), a versatile new tool able to map cell membranes in 3D and simultaneously obtain images of the cytoplasm. Topography, error, transmission and reflection signals were acquired to describe cell morphology with nanometer-scale resolution. Oligodendrocytes were studied as a model because their extensive membrane processes (typical of their physiological role in myelination) made them particularly suitable to test the sensitivity of the new method. Furthermore, we combined a classical histochemical method with SNOM, to identify specific intracellular proteins at high definition. In particular, with this technique, cytoskeleton elements of oligodendrocytes, such as microtubules, were observed with tubulin antibodies. Images obtained with SNOM were also compared with those from conventional scanning electron microscopy (SEM) and optical microscopy. Our results showed that SNOM allowed to ob
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2307874
 Avviso

Registrazione in corso di verifica.
La registrazione di questo prodotto non è ancora stata validata in ArTS.

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 7
social impact